Separate the barriers so they have a 2cm gap between them.
Answer:
Explanation:
We Often solve the the integral neutron transport equation using the collision probability (CP) method which usually requires flat flux (FF) approach. In this research, it has been carried out in the cylindrical nuclear fuel cell with the spatial of mesh with quadratic flux approach. This simply means that the neutron flux at any region of the nuclear fuel cell is forced to follow the pattern of a quadratic function.
Furthermore The mechanism may be referred to as the process of non-flat flux (NFF) approach. The parameters that calculated in this study are the k-eff and the distribution of neutron flux. The result shows that all parameters are in accordance with the result of SRAC.
Answer:
5773.50269 Hz
23 A
Explanation:
= Inductance = 6 mH
= Capacitance = 5 μF
= Resistance = 3 Ω
= Maximum emf = 69 V
Resonant angular frequency is given by

The resonant angular frequency is 5773.50269 Hz
Current is given by

The current amplitude at the resonant angular frequency is 23 A
The element is iridium and it has 77 electrons
Answer:
v = 2 v₁ v₂ / (v₁ + v₂)
Explanation:
The body travels the first half of the distance with velocity v₁. The time it takes is:
t₁ = (d/2) / v₁
t₁ = d / (2v₁)
Similarly, the body travels the second half with velocity v₂, so the time is:
t₂ = (d/2) / v₂
t₂ = d / (2v₂)
The average velocity is the total displacement over total time:
v = d / t
v = d / (t₁ + t₂)
v = d / (d / (2v₁) + d / (2v₂))
v = d / (d/2 (1/v₁ + 1/v₂))
v = 2 / (1/v₁ + 1/v₂)
v = 2 / ((v₁ + v₂) / (v₁ v₂))
v = 2 v₁ v₂ / (v₁ + v₂)