Answer:
About 547 grams.
Explanation:
We want to determine the mass of copper (II) bicarbonate produced when a reaction produces 2.95 moles of copper (II) bicarbonate.
To do so, we can use the initial value and convert it to grams using the molar mass.
Find the molar mass of copper (II) bicarbonate by summing the molar mass of each individual atom:

Dimensional Analysis:

In conclusion, about 547 grams of copper (II) bicarbonate is produced.
Complete one rotation.
Hope this helps.
Answer:
A) That resistance in bacteria is produced due to inactivation of ampicillin by the beta lactamase enzyme. This enzyme is expressed by the bla gene found in the plasmid. This enzyme is secreted into the culture medium, thereby inactivating ampicillin. Thanks to this inactivation, the bacteria colonies will be able to develop. After a day of incubation, only those bacteria that took the plasmid that gives them resistance to ampicillin will grow after transformation. After prolonged incubation, two types of colonies can be observed in the culture medium. One large colony with ampicillin resistance, and another small colony, both of which are sensitive to ampicillin.
B) Large colonies are characterized by being resistant to ampicillin. When Ramón isolates the plasmid, he will have the gene that provides resistance to antibiotics. Said plasmid can be used again on those bacteria that are sensitive to ampicillin.
On the other hand, satellite colonies are sensitive to ampicillin. These types of colonies do not have the plasmid that contains the gene that gives ampicillin resistance. It is not possible to isolate any plasmids from these satellite colonies. These satellite bacteria will not be able to grow if they are transferred to a plate containing fresh ampicillin, while large colonies, which possess the plasmid that gives them resistance to ampicillin, will be able to grow on that plate.
Explanation:
By direct heating of an element with oxygen : many metals and non-. metals burn rapidly when heated in oxygen or air producing their oxides e.g.
Melting point- the temperature at which a substance has changed from a solid to a liquid
freezing- the temperature at which a substance chanes from liquid to a solid
boiling point- the temperature at which a substance changes from a liquid to a gas phase