Answer:
carbon mass = 12.01g/mol
hydrogen mass = 1.01g/mol
4 carbon atoms and 10 hydrogen so
12.01 x 4 + 1.01 x 10
48.04g/mol + 10.10g/mol
= 58.14g/mol
Since you forgot to include the choices for classification, I would just define each of these and tell you the hints that would help you classify them.
Among these acids and bases, its is the strong acids and strong bases that are easily classified. You should note that there are only 7 strong acids existing. All the rest are weak acids. These 7 acids are: HCl, HBr, HI, HClO₃, HClO₄, HNO₃ and H₂SO₄. On the other hand, there are only 8 strong bases; the rest are weak bases. These are the hydroxides of the Group ! and !! metals: LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)₂, Sr(OH)₂, and Br(OH)₂.
For the weak acids and weak bases, just remember the definitions of Arrhenius, Lewis and Bronsted-Lowry. A weak base are those compounds that accept H⁺ protons, produce OH⁻ ions when solvated and an electron donor. A weak acid are those compounds that donate H⁺ protons, produce H⁺ ions when solvated and an electron acceptor.
I think it’s either 1 or 2 !!
Polylactic acid is the correct answer
Answer:
The volume of the sample is 17.4L
Explanation:
The reaction that occurs requires the same amount of CO and NO. As the moles added of both reactants are the same you don't have any limiting reactant. The only thing we need is the reaction where 4 moles of gases (2mol CO + 2mol NO) produce 3 moles of gases (2mol CO2 + 1mol N2). The moles produced are:
0.1800mol + 0.1800mol reactants =
0.3600mol reactant * (3mol products / 4mol reactants) = 0.2700 moles products.
Using Avogadro's law (States the moles of a gas are directly proportional to its pressure under constant temperature and pressure) we can find the volume of the products:
V1n2 = V2n1
<em>Where V is volume and n moles of 1, initial state and 2, final state of the gas</em>
Replacing:
V1 = 23.2L
n2 = 0.2700 moles
V2 = ??
n1 = 0.3600 moles
23.2L*0.2700mol = V2*0.3600moles
17.4L = V2
<h3>The volume of the sample is 17.4L</h3>