You have to be very careful with this question. A change in mass can also occur in chemical changes especially if you have too much of something. For example
CH4 + 1.5 02 ===> CO2 + H2O
If you have too much of either CH4 or O2, there will be some CH4 or O2 left over. There has been a change in mass that you have too much of.
However that is not the point of the question. It is just something you need to be aware of.
Suppose you have a piece of aluminum and you take a course grinder after it. You will change the texture of the side you took the grinder to. If the aluminum has been anodized (a color has been put on it's surface), you may grind the color off or if it is just plain aluminum, you may roughen the surface, but you won't change what the aluminum will do chemically.
You may need only a small portion of the aluminum and you grind off just what you need. That will change the mass of both what you took off and the piece that you want, but the aluminum will still do whatever chemical property you need to use.
So you can change both texture and mass without changing the chemical properties of the substance whose mass or texture you are changing.
If the solution is BASIC than it will turn purple but if ACIDIC it will turn pink.
A calorimeter experiment is a set-up that provides insulation so that no heat escapes to the surroundings and all energy can be accounted for. It can be done at either constant volume or constant pressure. So, the answer to this is knowing the mass of water, the specific heat which is an empirical data, and the change in temperature which can be measured using a thermometer. This experiment could measure the mass of an unknown substance added or the specific heat of the substance or the calorimeter. <em>The answer is D.</em>
Answer:
104.352°C
Explanation:
Data Given:
Boiling point of water = 100.0°C
Kb (boiling point constant = 0.512°C/m
Concentration of the Mg₃(PO₄)₂ = 8.5 m
Solution:
Formula Used to find out boiling point
ΔTb = m.Kb . . . . . . (1)
where
ΔTb = boiling point of solution - boiling point of water
So,
we can write equation 1 as under
ΔTb = Tb (Solution) -Tb (water)
As we have to find out boiling point so rearrange the above equation
Tb (Solution) = m.Kb + Tb (water) . . . . . . . (2)
Put values in Equation 2
Tb (Solution) = (8.5 m x 0.512°C/m ) + 100.0°C
Tb (Solution) = 4.352 + 100.0°C
Tb (Solution) = 104.352°C
so the boiling point of Mg₃(PO₄)₂ 8.5 m solution = 104.352°C
Answer:
The correct answer is option B, that is, CO + H2O → H2 + CO2
The redox reactions are regarded as the chemical reactions in which one reactant goes through the process of reduction and one reactant goes through the process of oxidation. The reduction reactions are the reactions in which gain of electrons occurs, while oxidation reactions are the reactions in which loss of electrons occurs.
From the mentioned options, only option B, that is, CO + H2O → H2 + CO2 is a kind of redox reaction. In this, the carbon is getting oxidized from +2 to +4 oxidation state, and hydrogen is getting reduced from +1 to 0 oxidation state. Hence, this reaction can be regarded as a redox reaction.
Explanation: