<span>Answer:
Some metals have the ability to form differently charged ions. For example, iron can form
2
+
or
3
+
ions. If you simply gave the name iron chloride, you would not know which charge the iron ion possessed.
A Roman numeral is to indicate the charge of the iron.
Iron (
II
) means the iron has a
2
+
charge
Iron (
III
) means that the iron has a
3
+
charge
So, iron (
II
) oxide would have a chemical formula of
FeO
.
(The oxide ion has a
2
â’
charge to balance the
2
+
of the iron to form a neutral compound.)
Iron (
III
) oxide would have a chemical formula of
Fe
2
O
3
(Here you need to find the common multiple of 6, so two iron ions with a
3
+
charge will balance the charge of three oxide ions with a
2
+
charge.)</span>
Answer: (C)
The frequency increases as the wavelength decreases
Explanation:
The relation between the frequency and wavelength of a wave is
Frequency = 1 / Wavelength
The Frequency of electromagnetic wave is inversely proportional to the wavelength. So, as the frequency increases, the wavelength of the wave decreases and vise-versa.
The frequency of a wave is number of complete cycles passing a particular point per second. Its S.I unit is Hertz whereas the wavelength of a wave is the distance between two consecutive crest and trough in meters.
So, on increasing the frequency of a wave, there will be more number of the cycles of wave per second which will decrease the distance between the consecutive crest and trough i.e wavelength.
The moon should be between the sun and Earth
Answer:
The reaction that is used to join fatty acid and glycerol is known as Lipogenesis.
Explanation:
Lipogenesis is an important anabolic pathway that helps in the biosynthesis of triacylglycerol by joining glycerol with fatty acid by ester linkage.Lipogenesis occur in liver and adipose tissue .
Lipogenesis takes place in our body to store excess fatty acid in form of triacylglycerol which is a complex lipid molecule.
The empirical formula is K₂O.
The empirical formula is the <em>simplest whole-number ratio</em> of atoms in a compound.
The <em>ratio of atom</em>s is the same as the <em>ratio of moles</em>.
So, our job is to calculate the <em>molar ratio</em> of K to O.
Step 1. Calculate the <em>moles of each element
</em>
Moles of K = 32.1 g K × (1 mol K/(39.10 g K =) = 0.8210 mol K
Moles of O = 6.57 g O × (1 mol O/16.00 g O) = 0.4106 mol 0
Step 2. Calculate the <em>molar ratio of each elemen</em>t
Divide each number by the smallest number of moles and round off to an integer
K:O = 0.8210:0.4106 = 1.999:1 ≈ 2:1
Step 3: Write the <em>empirical formula
</em>
EF = K₂O