Answer:
If sound waves of the same energy were passed through a block of wood and a block of steel, which is more dense than the wood, the molecules of the steel would vibrate at a slower rate. Sound moves faster through denser air because the molecules are closer together in dense air and sound can be more easily passed on.
Explanation:
Answer:
We know that the torque can be calculated as follows:
T = rpsinα
With r being the distance of the body from the center of the circumference he has as trajectory, p being the momentum of the body and sinα being the sine of the angle between the 2 vectors: r and p.
It's pretty obvious that T is directly proportional to the momentum, that can be written as p = m·v, with m being the mass of the object and v the velocity of the object.
Answer:
is the distance from the obstacle of reflection.
wavelength 
Explanation:
Given that:
- frequency of sound,

- time taken for the echo to be heard,

- speed of sound,

We know,

<em>During an echo the sound travels the same distance back and forth.</em>


is the distance from the obstacle of reflection.
<u>Now the wavelength of sound waves:</u>


