If an object<span> has a net </span>force<span> acting on it, it will accelerate. The </span>object<span> will speed up, slow down or change direction. An </span>unbalanced force<span> (net </span>force<span>) acting on an </span>object<span>changes its speed and/or direction of motion. An </span>unbalanced force<span> is an unopposed</span>force<span> that causes a change in motion.
thus the car would get its speed, and or direction mixed up</span>
Answer:
1. 2.67 s
2. 0.1 m/s²
Explanation:
1. Determination of the time taken for the penguin to fall.
Height (h) of cliff = 35 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
35 = ½ × 9.8 × t²
35 = 4.9 × t²
Divide both side by 4.9
t² = 35 / 4.9
Take the square root of both side
t = √(35 / 4.9)
t = 2.67 s
Thus, it will take 2.67 s for the penguin to fall onto the head of a napping polar bear.
2. Determination of the acceleration of the penguin.
Initial velocity (u) = 0 m/s.
Final velocity (v) = 2 m/s.
Time (t) = 20 s
Acceleration (a) =?
a = (v – u)/t
a = (2 – 0)/ 20
a = 2 / 20
a = 0.1 m/s²
Thus, the acceleration of the penguin is 0.1 m/s²
Answer:
s^ -1 ( or 1/sec)
Explanation:
Velocity is given in units of displacement / sec
like feet /sec or m/sec
so b would have units of s^-1
(or perhaps a more general term would be time^-1)
Answer:
because each row increases in atomic mass by a specific number, so anything over five is in the second row.
We can solve the problem by using the first law of thermodynamics, which states that:

where

is the change in internal energy of the system
Q is the heat absorbed by the system
W is the work done by the system
In our problem, the heat absorbed by the system is Q=+194 kJ, while the work done is W=-120 kJ, where the negative sign means the work is done by the surroundings on the system. Therefore, the variation of internal energy is