Answer:
a) a = 2.383 m / s², b) T₂ = 120,617 N
, c) T₃ = 72,957 N
Explanation:
This is an exercise of Newton's second law let's fix a horizontal frame of reference
in this case the mass of the sleds is 30, 20 10 kg from the last to the first, in the first the horizontal force is applied.
a) request the acceleration of the system
we can take the sledges together and write Newton's second law
T = (m₁ + m₂ + m₃) a
a = T / (m₁ + m₂ + m₃)
a = 143 / (10 +20 +30)
a = 2.383 m / s²
b) the tension of the cables we think through cable A between the sledges of 1 and 20 kg
on the sled of m₁ = 10 kg
T - T₂ = m₁ a
in this case T₂ is the cable tension
T₂ = T - m₁ a
T₂ = 143 - 10 2,383
T₂ = 120,617 N
c) The cable tension between the masses of 20 and 30 kg
T₂ - T₃ = m₂ a
T₃ = T₂ -m₂ a
T₃ = 120,617 - 20 2,383
T₃ = 72,957 N
Answer:
If the two waves have the same amplitude and wavelength, then they alternate between ... In fact, the waves are in phase at any integer multiple of half of a period: ... The propagation velocity of the waves is 175 m/s.
Explanation:
please ask me in brainlist ok
Answer:
if this surface has a higher index than in the medium where the light travels, the reflected wave has a phase change of 180º
Explanation:
When a ray of light falls on a surface if this surface has a higher index than in the medium where the light travels, the reflected wave has a phase change of 180º this can be explained by Newton's third law, the light when arriving pushes the atoms of the medium that is more dense, and these atoms respond with a force of equal magnitude, but in the opposite direction.
When the fractional index is lower than that of the medium where the reflacted beam travels, notice a change in phase.
Also, when light penetrates the medium, it modifies its wavelength
λ = λ₀ / n
We take these two aspects into account, the condition for contributory interference is
d sin θ = (m + 1/2) λ
for destructive interference we have
d sin θ = m λ
in general this phenomenon is observed at 90º
2 d = (m +1/2) λ° / n
2nd = (m + ½) λ₀
The car's speed is 240km/4hr= 60km/hr.
There's not enough information given in the question to determine its velocity.