Answer:
I gonna give you the number so but you need to round 6.19047619048
Explanation:
- This is a speed formula so you would use the formula speed=distance/time
- You need to rearrange it to time=distance/speed
- So you need to divide 13m by 2.1 m/s
Explanation:
The magnitude of the electric field between the plates is given by
E = -ΔV/d
minus sign indicates Potential decreases in the direction of electric field
where
ΔV is the potential difference between the plates
D is the distance between the plates.
The work done when carrying an electrical charge on an equipotential surface between one position to the other is zero W= q(V-V)=0 The electric field lines of force are always perpendicular to an equipotential surface. That conductor in an equipotential surface as direction E is at right angles to an eauipotential surface The intensity of the electric field along an equipotential surface is always zero. Equipotential surfaces never collide with each other as this would mean that at that point, there are two alternative values that are not true.
(a) Determine the circumference of the Earth through the equation,
C = 2πr
Substituting the known values,
C = 2π(1.50 x 10¹¹ m)
C = 9.424 x 10¹¹ m
Then, divide the answer by time which is given to a year which is equal to 31536000 s.
orbital speed = (9.424 x 10¹¹ m)/31536000 s
orbital speed = 29883.307 m/s
Hence, the orbital speed of the Earth is ~29883.307 m/s.
(b) The mass of the sun is ~1.9891 x 10³⁰ kg.
<span>d.rotating counterclockwise and slowing down
This is a matter of understanding the notation and conventions of angular rotations. Positive rotations are counter clockwise and negative rotations are clockwise. An easy way to remember this is the "right hand rule". Make a closed fist with your right hand and have the thumb sticking outwards. If you orient your thumb such that it's pointing in the direction of the positive value along the axis, your fingers will be curled in the positive rotational direction. So in the described scenario, the sphere is rotating in the positive direction (counter clockwise) and decelerating due to the negative angular acceleration. That immediately indicates that options "a", "b", and "e" are wrong since they mention the sphere going clockwise at the beginning. Of the two remaining options "c" and "d", we can discard option "c" since it has the rotation speeding up, and that leaves us with option "d" where the sphere is rotating counter clockwise and slowing down.</span>
The answer is D I took the test