Answer:
2491.23 kg/m³
Explanation:
From Archimedes principle,
R.d = weight of object in air/ upthrust in water = density of the object/density of water
⇒ W/U = D/D' ....................... Equation 1
Where W = weight of the ceramic statue, U = upthrust of the ceramic statue in water, D = density of the ceramic statue, D' = density of water.
Making D the subject of the equation,
D = D'(W/U).................... Equation 2
Given: W = 28.4 N, U = lost in weight = weight in air- weight in water
U = 28.4 - 17.0 = 11.4 N,
Constant: D' = 1000 kg/m³.
Substitute into equation 2,
D = 100(28.4/11.4)
D = 2491.23 kg/m³
Hence the density of the ceramic statue = 2491.23 kg/m³
Answer:
a.
b.
c.
d. The angular acceleration when sitting in the middle is larger.
Explanation:
a. The magnitude of the torque is given by
, being r the radius, F the force aplied and
the angle between the vector force and the vector radius. Since
and so
.
b. Since the relation
hols, being I the moment of inertia, the angular acceleration can be calculated by
. Since we have already calculated the torque, all left is calculate the moment of inertia. The moment of inertia of a solid disk rotating about an axis that passes through its center is
, being M the mass of the disk. If we assume that a person has a punctual mass, the moment of inertia of a person would be given by
, being
the mass of the person and
the distance from the person to the center. Given all of this, we have
.
c. Similar equation to b, but changing
, so
.
d. The angular acceleration when sitting in the middle is larger because the moment of inertia of the person is smaller, meaning that the person has less inertia to rotate.
There's a very subtle thing going on here, one that could blow your mind.
Wherever we look in the universe, no matter what direction we look,
we see the light from distant galaxies arriving at our telescopes with
longer wavelengths than the light SHOULD have.
The only way we know of right now that can cause light waves to get
longer after they leave the source is motion of the source away from
the observer. The lengthening of the waves on account of that motion
is called the Doppler effect. (The answer to the question is choice-c.)
But that may not be the only way that light waves can get stretched. It's
the only way we know of so far, and so we say that the distant galaxies
are all moving away from us.
From that, we say the whole universe is expanding, and that right there is
one of the strongest observations that we explain with the Big Bang theory
of creation.
Now: If ... say tomorrow ... a competent Physicist discovers another way
for light waves to get stretched after they leave the source, then the whole
"expanding universe" idea is out the window, and probably the Big Bang
theory along with it !
Now that our mind has been blown, come back down to Earth with me,
and I'll give you something else to think about:
It's true that when we look at distant galaxies, we do see their light
arriving in our telescopes with longer wavelengths than it should have.
And then we use the Doppler effect to calculate how fast that galaxy
is moving away from us. That's all true. Astronomers are doing it
every day. I mean every night.
So here's the question for you to think about ... maybe even READ about:
When the light from a distant galaxy pours into our telescope, and we
look at it, and we measure its wavelength, and we find that the wavelength
is longer than it should be ... how do we know what it should be ? ? ?
Never is the correct answer