Initial velocity u = 50 miles/hour
acceleration a = 10 miles/hour
Time t = 2 hours
Distance travelled S = ut + (at^2)/2
Substituting the values in the second equation of motion,
S = 50*2 + (10 * 2 *2)/2
S = 100 + 20
S = 120 miles
Therefore the distance travelled by the car in the next two hours is 120 miles
Answer:
its not moving at a constant velocity because it is slowing down
Explanation:
Answer:


Explanation:
d = Diameter of column = 0.5 inch
= Area of concrete = 
The strain in the system is conserved

Now


Stress is given by

The stress in the steel is 

The stress in the steel is 
Answer:
W = 222 N.
Explanation:
The qiestion says" If the acceleration of gravity on the surface of the planet Mercury is 3.7 m / s2, then what would be the weight of a person with mass 60 kg on its surface?
"
Mass of the person, m = 60 kg
The acceleration due to gravity on the surface of gravity is 3.7 m/s²
We need to find the weight of a person on the surface of Mercury.
Weight of an object is given by :
W = mg
So,
W = 60 kg × 3.7 m/s²
W = 222 N
Hence, the person will weigh 2222 N on the surface of Moon.
Answer:
Distance - 1000m
Time - 20min
Speed - ?
Use the formula of distance ÷ time = speed.
s = d/t
s = 1000m/20min
s = 50 m/min
Hope this helps, thank you !!