Answer:

Explanation:
Molarity is found by dividing the moles of solute by liters of solution.

We know the molarity is 1.2 M (mol\liter) and there are 2.3 liters of solution. Substitute the known values into the formula.

Since we are solving for x, we must isolate the variable. It is being divided by 2.3 and the inverse of division is multiplication. Multiply both sides by 2.3 liters.

In a solution with a molarity of 1.2 and 2.3 liters of solution, there are 2.76 moles.
Answer:
The organs present inside the chest are :
1. The lungs
2. The heart
Explanation:
The chest cavity is also called as the thoracic cavity. It is the second largest hollow space of the body.In the bottom , it is enclosed by the diaphragm.
This cavity actually contain three space each round with mesothelium , pleural cavity and precardial cavity.
This contain the lungs , the tracheobronchial tree , the heart , the blood vessels which transport the blood between the heart and the lungs.
It also contain the esophagus .
Esophagus is the path through which the food passes from the mouth to the stomach.
Answer:
Yes.
Explanation:
Wasting household water does not ultimately remove that water from the global water cycle, but it does remove it from the portion of the water cycle that is readily accessible and usable by humans. Also, "wasting" water wastes the energy and resources that were used to process and deliver the water.
Answer:
pH = 2.69
Explanation:
The complete question is:<em> An analytical chemist is titrating 182.2 mL of a 1.200 M solution of nitrous acid (HNO2) with a solution of 0.8400 M KOH. The pKa of nitrous acid is 3.35. Calculate the pH of the acid solution after the chemist has added 46.44 mL of the KOH solution to it.</em>
<em />
The reaction of HNO₂ with KOH is:
HNO₂ + KOH → NO₂⁻ + H₂O + K⁺
Moles of HNO₂ and KOH that react are:
HNO₂ = 0.1822L × (1.200mol / L) = <em>0.21864 moles HNO₂</em>
KOH = 0.04644L × (0.8400mol / L) = <em>0.0390 moles KOH</em>
That means after the reaction, moles of HNO₂ and NO₂⁻ after the reaction are:
NO₂⁻ = 0.03900 moles KOH = moles NO₂⁻
HNO₂ = 0.21864 moles HNO₂ - 0.03900 moles = 0.17964 moles HNO₂
It is possible to find the pH of this buffer (<em>Mixture of a weak acid, HNO₂ with the conjugate base, NO₂⁻), </em>using H-H equation for this system:
pH = pKa + log₁₀ [NO₂⁻] / [HNO₂]
pH = 3.35 + log₁₀ [0.03900mol] / [0.17964mol]
<h3>pH = 2.69</h3>