It showed that atoms can be divided into smaller parts.
It showed that all atoms contain electrons.
Explanation:
The experiment carried out by J.J Thomson on the gas discharge tube by passing electric current through a tube filled with many different gases provided a good insight into the structure of an atom.
This experiment led to the development of the plum pudding model of the atom.
- Cathode rays and it properties were discovered in this set up.
- It furnished the scientific community with evidences that atoms can be divided into smaller parts.
- Since atoms now contain some subatomic particles, they can be broken down in like manner into further bits.
- The cathode rays which were later termed electrons became a fundamental particles known for every atom.
learn more:
Rutherford's model of the atom brainly.com/question/1859083
#learnwithBrainly
http://century.rochester.k12.mn.us/cms/One.aspx?portalId=3086882&pageId=6133921
Hope this helps!
Please mark brainliest. :)
The question is incomplete. Complete question is attached below
..............................................................................................................................
Correct Answer:
Option C i.e. I ~ III < IV < V < II
Reason:
During a nucleophilic subsitution reaction of chloroarenes, Cl- group is replaced by an nucleophile like OH-.
Order of reactivity, during such reactions depends on the electron density on carbon atom that is attached to Cl. Lower the electron density, greater will be the reactivity.Among the provided chloroarenes, electron density on C atom will be minimum in case of compound II, because of presence of electron withdrawing group (-NO2) at ortho and para position. Due to this, there will be large number of resonating structures. This signifies greater electron de-localization, and hence largest reactivity for nucleophilic substitution reaction.
Followed by this, compound V will show greater reactivity, due to presence of -NO2 group at para and one of the ortho position. Compound IV will have less number of resonating structures as compared to compound II and V, hence it will display poor reactivity towards nucleophilic substitution reaction.
Finally, compound 1 and III will minimum reactivity towards nucleophilic substitution reaction, because -NO2 group present at meta position (compound III) will not participate in resonance.