If i remember correctly it should be a wedge
<span>Actually, the heat of reaction hrxn s calculated by taking
the sum of the heats of formation of the products minus the sum of the heats of
formation of the reactants. However, at heat of formations of pure elements at
atmospheric conditions is zero, therefore the hf of N2 is not important since
it is zero anyway.</span>
The amount of current required to produce 75. 8 g of iron metal from a solution of aqueous iron (iii)chloride in 6. 75 hours is 168.4A.
The amount of Current required to deposit a metal can be find out by using The Law of Equivalence. It states that the number of gram equivalents of each reactant and product is equal in a given reaction.
It can be found using the formula,
m = Z I t
where, m = mass of metal deposited = 75.8g
Z = Equivalent mass / 96500 = 18.6 / 96500 = 0.0001
I is the current passed
t is the time taken = 75hour = 75 × 60 = 4500s
On subsituting in above formula,
75.8 = E I t / F
⇒ 75.8 = 0.0001 × I × 4500
⇒ I = 168.4 Ampere (A)
Hence, amount of current required to deposit a metal is 168.4A.
Learn more about Law of Equivalence here, brainly.com/question/13104984
#SPJ4
Answer:
Hi im an online tutor and I can help you with your assignments. we have experts in all fields. check out our website for assistance https://toplivewriters.com
Explanation:
1.2*10^24# atoms of chlorine
Explanation:
Chlorine gas (#Cl_2#) has two atoms of elemental chlorine in a molecule, so:
#1# mol of #Cl_2# have #6*10^23# molecules of #Cl_2#
#1# molecule of #Cl_2# have #2# atoms per molucule
Then #2*6*10^23 = 1.2*10^24# atoms of chlorine in a mol of chlorine gas