Answer: compare the relative strength of coefficients.
Step-by-step explanation: The Coefficient of determination usually denoted as R^2 is obtained by taking the squared value of the correlation Coefficient (R). It's value ranges from 0 to 1 and the value obtained gives the proportion of variation in the dependent variable which could be attributed to it's correlation or relationship to th independent variable. With a R^2 value close to 1, this means a large portion of Variation in a variable A could be explained due to changes in variable B while a low value signifies a low variance between the variables. Hence, the Coefficient of determination is used in comparing the relative strength of the Coefficients in other to establish whether a weak or strong relationship exist.
Answer:

Step-by-step explanation:
The exponent of positive 1/2 is the square root of 60
60 ^1/2 = 
The answer to the problem is
y=1/2x
Answer:
r = √13
Step-by-step explanation:
Starting with x^2+y^2+6x-2y+3, group like terms, first x terms and then y terms: x^2 + 6x + y^2 -2y = 3. Please note that there has to be an " = " sign in this equation, and that I have taken the liberty of replacing " +3" with " = 3 ."
We need to "complete the square" of x^2 + 6x. I'll just jump in and do it: Take half of the coefficient of the x term and square it; add, and then subtract, this square from x^2 + 6x: x^2 + 6x + 3^2 - 3^2. Then do the same for y^2 - 2y: y^2 - 2y + 1^2 - 1^2.
Now re-write the perfect square x^2 + 6x + 9 by (x + 3)^2. Then we have x^2 + 6x + 9 - 9; also y^2 - 1y + 1 - 1. Making these replacements:
(x + 3)^2 - 9 + (y - 1)^2 -1 = 3. Move the constants -9 and -1 to the other side of the equation: (x + 3)^2 + (y - 1)^2 = 3 + 9 + 1 = 13
Then the original equation now looks like (x + 3)^2 + (y - 1)^2 = 13, and this 13 is the square of the radius, r: r^2 = 13, so that the radius is r = √13.