<span>If 36 gm of potassium chlorate enter into the reaction, the total mass of the two products will still be 36 gm because if there is only one reactant, the mass of the compounds after the reaction will be same that reactant based on the law of conservation of matter.</span>
Answer:
If the temperature was increased to 404 K, its volume would be 3.68 L.
Explanation:
Charles' Law gives a relationship between the volume and the temperature of the gas at constant temperature. This law states that the volume of a given amount of gas held at constant pressure is directly proportional to the temperature.


Let

Let
is new volume. Using above formula we get :

If the temperature was increased to 404 K, its volume would be 3.68 L.
Answer:

Explanation:
Hello!
In this case, since pyridinium chloride has a pKb of 8.77 which is a Kb of 1.70x10⁻⁹ and therefore a Ka of 5.89x10⁻⁵ which means it tends to be acidic, we write its ionization via:

Because it is a Bronsted base which donates one hydrogen ion to the water to produce hydronium. Thus, we write the equilibrium expression with the aqueous species only:
![Ka=\frac{[C_5H_5NCl^-][H_3O^+]}{[C_5H_5NHCl]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BC_5H_5NCl%5E-%5D%5BH_3O%5E%2B%5D%7D%7B%5BC_5H_5NHCl%5D%7D)
In terms of the reaction extent
, we write:

Thus, solving for
we obtain:

Clearly the solution is 0.0048 M because to negative values are not allowed, therefore, since it equals the concentration of hydronium which defines the pH, we write:
![pH=-log([H_3O^+])=-log(0.0048)\\\\pH=2.3](https://tex.z-dn.net/?f=pH%3D-log%28%5BH_3O%5E%2B%5D%29%3D-log%280.0048%29%5C%5C%5C%5CpH%3D2.3)
Best regards!
Answer:
Total amount of alum lost = 0.5122 grams
Explanation:
Let the total volume of the solution be 100 mL
In 100 mL of solution, there is 2.63 gram of alum.
Out of this 100 mL solution, 42.5 mL is remaining.
Amount of alum in 42.5 mL solution is
grams
Now the amount of alum lost is
grams
Answer:
Magnetic fields and Electric fields
Explanation: