Answer: Frost weathering is a collective term for several mechanical weathering processes induced by stresses created by the freezing of water into ice.
I think the answer is A but I could be wrong
Answer to this is O-atom.
Explanation: The Bronsted acid-base theory is the backbone of chemistry. This theory focuses mainly on acids and bases acting as proton donors or proton acceptors.
where
is the Lewis Acid and
is the Lewis Base and
is the Covalent Bond.
Reaction of dissociation of
in
is given as:

In this reaction O-atom has lone pair in water and therefore it accepts the proton from
forming a Lewis Base.
Answer: i think its protons and electrons but it also might just be atoms because protons and electrons make atoms when there are also neutrons
Explanation:
Answer:
- <u><em>Magnesium and fluorine.</em></u>
Explanation:
<em>Ionic compounds</em> are formed by the electrostatic attraction of cations and anions.
Cations, positive ions, are formed when atoms lose electrons, and anions, negative ions, are formed when atoms gain electrons.
When two different atoms have similar atraction for electrons (electronegativity) they will not donate to nor catch electrons from each other, so cations and anions will not be formed. Instead, the atoms would prefer to share electrons forming covalent bonds to complete their outermost shell (octet rule).
Then, in order to form ionic compounds the electronegativities have to substantially different. This situation does not happen between two nonmetal elements, which nitrogen and sulfur are. Then, you can predict safely that nitrogen and sulfur will not form an ionic compound.
Ionic compounds, then require the electronegativity difference that exist between some metals and nonmetals. Being magnesium an alkaline earth metal, its electronegativity is very low. On the other hand, fluorine the first element of the group 17, has the highest electronegativity of all the elements.Thus magnesium and fluorine will have enough electronegativity difference to justify the exchange of electrons, forming ions and, consequently, ionic compounds.