Answer:
a)

b)
m = 48lb
c)
b = 144.76lb
Explanation:
The general equation of a damping oscillate motion is given by:
(1)
uo: initial position
m: mass of the block
b: damping coefficient
w: angular frequency
α: initial phase
a. With the information given in the statement you replace the values of the parameters in (1). But first, you calculate the constant b by using the information about the viscous resistance force:

Then, you obtain by replacing in (1):
6in = 0.499 ft

b.
mass, m = 48lb
c.
b = 144.76 lb/s
Answer:
I think the answer is B, I am not for sure
To solve this problem we will use the trigonometric concepts to find the distance h, which will allow us to find the speed of Jeff and that will finally be the variable that will indicate the total tension, since it is the variable of the centrifugal Force given in the vine at the lowest poing of the swing.
From the image:


When Jeff reaches his lowest point his potential energy is converted to kinetic energy





Tension in the string at the lowest point is sum of weight of Jeff and the his centripetal force




Therefore the tension in the vine at the lowest point of the swing is 842.49N
Answer:
Whats the equation to your question?
Answer:
Magnitude of electric field is 1.06 x
V/m along negative X-direction
Explanation:
Given: initial velocity of proton = u = 3.5 x
m/s
final velocity of proton = v = 0 m/s
initial point
= 0.2 m and final point is
= 0.8 m
According to conservation of energy:
change in in kinetic energy = change in potential energy of proton
⇒
where q and m is the charge and mass of proton E is the electric field ,
and
is the initial and final position of proton
on substituting the respected values we get,
1.023 x
= 9.6 x
x E
⇒ E = 1.06 x
V/m
external force is opposite to the motion as velocity of proton decreases with distance.
Therefore, magnitude of electric field is 1.06 x
V/m along negative X-direction