You can use map and notice one thinh. If you flipp over the edges of continents and put them together, you will get a big single continent that is called pangaea. Practically it's impossible but it could be imagined.
Answer:
v₀ = 280.6 m / s
Explanation:
we have the shock between the bullet and the block that we can work with at the moment and another part where the assembly (bullet + block) compresses a spring, which we can work with mechanical energy,
We write the mechanical energy when the shock has passed the bodies
Em₀ = K = ½ (m + M) v²
We write the mechanical energy when the spring is in maximum compression

½ (m + M) v² = ½ k x²
Let's calculate the system speed
v = √ [k x² / (m + M)]
v = √[152 ×0.78² / (0.012 +0.109) ]
v = 27.65 m / s
This is the speed of the bullet + Block system
Now let's use the moment to solve the shock
Before the crash
p₀ = m v₀
After the crash

The system is formed by the bullet and block assembly, so the forces during the crash are internal and the moment is preserved

m v₀ = (m + M) v
v₀ = v (m + M) / m
let's calculate
v₀ = 27.83 (0.012 +0.109) /0.012
v₀ = 280.6 m / s
Answer:
Explanation:
i )
When it is disconnected with the battery , the charge stored in it becomes fixed . When the plate distance becomes half , its capacitance becomes twice from C to 2C . Let charge stored in it at the time of disconnection from battery be Q . Let plate separation reduces from d to d / 2
So charged stored in it will remain unchanged .
ii )
Potential difference = charge / capacitance
in the first case potential difference = Q / C
in the second case potential difference = Q / 2C
So potential difference becomes half .
iii ) electric field = potential diff / plate separation
in the first case electric field = Q / (d x C )
in the second case electric field = 2 Q / (d x 2C)
= Q / (d x C )
So electric field remains unchanged .
iv)
energy stored in first case = Q² / 2C
In the second case energy stored = Q² / 2x2C
so energy stored becomes half .
Answer: Nuclear fusion.
Explanation: The sun is a medium-sized star, its radius is 695.510 km and its mass is equivalent to that obtained by bringing together about 110 planets equal to Earth (6371 km is its radius).
It has six layers: The core, the radioactive zone, the convective zone, the photosphere, the chromosphere and the corona.
Magnetic field disruptions near active regions can generate strong explosions in the sun such as sun flashes and coronal mass ejections. The degree of complexity of the sun´s magnetic field increases and decreases with the course of each sunspot cycle.
Sir Arthur Eddington was the first to evaluate all the data and dared to conjecture that nuclear fusion, the process that creates heavy elements from the fusion of lighter ones, could be responsible for the great production of the sun´s energy; this process make the sun´s energy was taken for the earth and the planet get back to the sun recycled energy. The sun has a very large and complex magnetic field; the average magnetic field of the sun is approximately 1 Gauss, almost twice as strong as the average magnetic field of the Earth´s surface (approximately 0.5 Gauss). Because the surface of the sun is more than 12.000 times larger than the Earth, the overall influence of the sun´s magnetic field is immensely large.