This is due to earths location in the solar system. Earth is in the habitat zone or the Goldie locks zone, in this zone it's not too hot or not too cold for water to exist. Other planets in different star systems have liquid oceans due to them being in the habitat zone.
Answer:kinetic energy converted to heat energy
Explanation:
As the ball rolls down kinetic energy is converted to heat energy
Answer:
a) x(t) = 10t + (2/3)*t^3
b) x*(0.1875) = 10.18 m
Explanation:
Note: The position of the horse is x = 2m. There is a typing error in the question. Otherwise, The solution to cubic equation holds a negative value of time t.
Given:
- v(t) = 10 + 2*t^2 (radar gun)
- x*(t) = 10 + 5t^2 + 3t^3 (our coordinate)
Find:
-The position x of horse as a function of time t in radar system.
-The position of the horse at x = 2m in our coordinate system
Solution:
- The position of horse according to radar gun:
v(t) = dx / dt = 10 + 2*t^2
- Separate variables:
dx = (10 + 2*t^2).dt
- Integrate over interval x = 0 @ t= 0
x(t) = 10t + (2/3)*t^3
- time @ x = 2 :
2 = 10t + (2/3)*t^3
0 = 10t + (2/3)*t^3 + 2
- solve for t:
t = 0.1875 s
- Evaluate x* at t = 0.1875 s
x*(0.1875) = 10 + 5(0.1875)^2 + 3(0.1875)^3
x*(0.1875) = 10.18 m
Answer:
(a) -472.305 J
(b) 1 m
Explanation:
(a)
Change in mechanical energy equals change in kinetic energy
Kinetic energy is given by
Initial kinetic energy is 
Since he finally comes to rest, final kinetic energy is zero because the final velocity is zero
Change in kinetic energy is given by final kinetic energy- initial kinetic energy hence
0-472.305 J=-472.305 J
(b)
From fundamental kinematic equation

Where v and u are final and initial velocities respectively, a is acceleration, s is distance
Making s the subject we obtain
but a=\mu g hence
