Answer:
Stretch in the spring = 0.1643 (Approx)
Explanation:
Given:
Mass of the sled (m) = 9 kg
Acceleration of the sled (a) = 2.10 m/s
²
Spring constant (k) = 115 N/m
Computation:
Tension force in the spring (T) = ma
Tension force in the spring (T) = 9 × 2.10
Tension force in the spring (T) = 18.9 N
Tension force in the spring = Spring constant (k) × Stretch in the spring
18.9 N = 115 N × Stretch in the spring
Stretch in the spring = 18.9 / 115
Stretch in the spring = 0.1643 (Approx)
Answer:
changes, same
combination
Nitrogen dioxide and oxygen
exothermic reaction
solubility
Explanation:
Hope this answer will help you
Answer:
The box 1 moves faster.
Explanation:
lets
Mass =m kg
Initial velocity = u m/s
Initial velocity of box = 0 m/s
Let stake mass of block = m
When ball bounces back:
The final speed of the box = v
Final speed of ball = - u
Pi = Pf ( From linear momentum conservation)
m x u + m x 0 = m ( - u) + m v
mu + mu = m v
v= 2 u
When ball get stuck :
The final speed of ball and box = v
Pi = Pf ( From linear momentum conservation)
m x u + m x 0 = (m+m) v
v= u /2
So the box 1 moves faster.
cant really answer here with text but at the top of the slide it should br positives and towards the bottom its negative.
This is because you go faster at the top of the slide than the bottom and when your at the bottom you slow down
Hey bro hope it helps you and mark me as brainliest