Answer: Highly-elliptical-earth-orbit (heo)
Explanation: Highly-elliptical-earth-orbit (heo) satellite system has unique properties
which is used by governments for spying and by scientific agencies for observing celestial bodies. It is an extremely elongated orbit that is useful for communication satellites which creates signals between a source transmitter and a receiver at different locations on earth. They are used by government for spying, scientific agencies for observing celestial bodies, for the internet and telephone communications.
Whats the question?
djdkkd
A wave is basically propagation of disturbances—that is, deviations from a state of rest or equilibrium—from place to place in a regular and organized way. Most familiar are surface waves on water, but both sound and light travel as wavelike disturbances, and the motion of all subatomic particles exhibits wavelike properties.
Answer:
The final velocity of the object is 330 m/s.
Explanation:
To solve this problem, we first must find the acceleration of the object. We can do this using Newton's Second Law, given by the following equation:
F = ma
If we plug in the values that we are given in the problem, we get:
42 = 7 (a)
To solve for a, we simply divide both sides of the equation by 7.
42/7 = 7a/7
a = 6 m/s^2
Next, we should write out all of the information we have and what we are looking for.
a = 6 m/s^2
v1 = 0 m/s
t = 55 s
v2 = ?
We can use a kinematic equation to solve this problem. We should use:
v2 = v1 + at
If we plug in the values listed above, we should get:
v2 = 0 + (6)(55)
Next, we should solve the problem by performing the multiplication on the right side of the equation.
v2 = 330 m/s
Therefore, the final velocity reached by the object is 330 m/s.
Hope this helps!
Speed. This ONLY includes the miles per hour. If it had a direction it would be velocity.