The correct answer is (a.) a parsec. A parsec is a distance an object would be from Earth if its parallax were one arcsecond. This unit of measurement is usually used in astronomy which makes it easier for astronomers to calculate or measure in space accurately.
Answer:
its B because we're not talking about mass even tho most people would have chosen A cuz it says mass and u they would think its apart of density but if ur testing to see density ur figuring out which object will sink and which one will float so da reason why da penny snuck it cuz da density is greater den da water and copper has a better chance of sinking den floating so dats why its B I hope dis helps :3
There is a 33% chance of a large earthquake off the coast of Oregon.
The two main concerns of a large earthquake are Gas fires and Tsunami .
Explanation:
Everytime a large earthquake hits in any other part of the world, We find a small earthquake hitting off the coast of Oregon.
So scientists feel that as United States is prone to Earthquakes, the people have to be prepared for such eventualities.
The main concern for this large earthquake is, that it might lead to gas leakages at homes that can start a gas fire, which might spread. So people have to be careful and check on any gas leakages.
Such large earthquakes can also lead to tsunami waves. So people have to take precautions and evacuate, if they are near the coastline.
True, an object at rest stays and rest and an object in motion stays in motion
It's weird but technically correct to say that a radio wave can be considered a low-frequency light wave. Radio and light are both electromagnetic waves. The only difference is that radio waves have much much much longer wavelengths, and much much much lower frequencies, than light waves have. But they're both the same physical phenomenon.
However, a radio wave CAN'T also be considered to be a sound wave. These two things are as different as two waves can be.
-- Radio is an electromagnetic wave. Sound is a mechanical wave.
-- Radio waves travel more than 800 thousand times faster than sound waves do.
-- Radio waves are transverse waves. Sound waves are longitudinal waves.
-- Radio waves can travel through empty space. Sound waves need material stuff to travel through.
-- Radio waves can be detected by radio, TV, and microwave receivers. Sound waves can't.
-- Sound waves can be detected by our ears. Radio waves can't.
-- Sound waves can be generated by talking, or by hitting a frying pan with a spoon. Radio waves can't.
-- Radio waves can be generated by an alternating current flowing through an isolated wire. Sound waves can't.