Deep under Jupiter's<span> clouds is a </span>huge<span> ocean of liquid metallic hydrogen. On Earth, hydrogen is usually gas. But on </span>Jupiter<span>, the </span>pressure<span> is so great inside its atmosphere that the gas becomes liquid. As </span>Jupiter<span> spins, the swirling, liquid metal ocean creates the strongest magnetic field in the solar system.</span>
Butterflies are cold-blooded and need the light from the sun to warm the muscles they use to fly. Not only do butterflies like the sun, the plants the they thrive on need full direct sun. Most plants need at least 8 hours of sunlight to bloom properly and provide enough nectar.
In a high-mass star, hydrogen fusion occurs via the CNO (Carbon-Nitrogen-Oxygen) cycle.
According to the life cycle of a star, there are three main phases in the life of a star: The initial phase (a quick phase), short phase or supergiant phase and death phase or supernova explosion.
the CNO cycle means Carbon-Nitrogen-Oxygen cycle and this process tale place during main sequence phase.
In this phase, hydrogen fuses into helium as a result of six different reaction taking place inside a star.
The first step of the sequence begins when the nucleus of carbon 12 isotope emits gamma rays after capturing a proton and produces nitrogen-13.
This whole cycle is known as stellar nucleosynthesis.
If you need to learn more about Carbon-Nitrogen Cycle click here:
brainly.com/question/13022835
#SPJ4
Answer:
Average atomic mass of carbon = 12.01 amu.
Explanation:
Given data:
Abundance of C¹² = 98.89%
Abundance of C¹³ = 1.11%
Atomic mass of C¹² = 12.000 amu
Atomic mass of C¹³ = 13.003 amu
Average atomic mass = ?
Solution:
Average atomic mass of carbon = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass of carbon = (12.000×98.89)+(13.003×1.11) /100
Average atomic mass of carbon= 1186.68 + 14.43333 / 100
Average atomic mass of carbon = 1201.11333 / 100
Average atomic mass of carbon = 12.01 amu.
A) Head to tail joining of monomers. :) (confirmed correct answer, I took the test)