The amount of heat transferred in and out of the system is measured by calorimetry. The thermometer in the calorimeter is used to measure the temperature.
<h3>What are the parts of the calorimetry device?</h3>
The thermometer (A) is a device used to measure the final and the initial temperature of the water or any other liquid in a system. A metal vessel is a place where the reaction mixture is present.
In-vessel (B), water, and metal are placed before the beginning of the experiment. The styrofoam cup or the outer metal vessel (C) insulates the instrument, from regulating the heat transformation.
Therefore, part A measures the temperature of the reaction mixture.
Learn more about insulated containers here:
brainly.com/question/866735
Answer:
group two elements are called alkaline earth metals
Explanation:
Because their oxides form in the earth and are water soluble
<span>In order to solve this problem you must first make sure all your numbers are in like terms. From the density value you can see that it is grams per liter. The first conversion you must do in convert the 125.0 mL value to Liters which you would do by dividing by 1000 because 1 liter is equal to 1000 mL. 125.0 divided by 1000 is 0.125 Liter. Now you will use the density equation to solve. The density equation is density is equal to mass divided by volume. Plug in your known numbers for density and volume. Then solve for mass. So Density (1.269 g/l is equal to mass divided by volume (.125 Liter) You must rearrange the equation to multiple density by volume which is 1.269 times 0.125 which will give you 0.1586. Because the Liters cancel each other out, the answer's unit will be grams. Your final answer is 0.1586 grams.</span>
<span>H2PCH3 + H2O <-----> H3PCH3+ + OH-</span>
Answer:
a) The lewis dot structure is shown in the image attached to this answer
b) The formal charge on each of the atoms is zero
c) bromine has an oxidation state of +5 while fluorine has an oxidation state of -1
d) 90 degrees
e) Square Pyramidal
f) polar bonds
g) polar molecule
Explanation:
The molecule BrF5 has a formal charge of zero. It exhibits an sp3d2 hybridization state with a square pyramidal geometry. The bond angle in the molecule is 90 degrees. It is a molecule of the type AX5E. The oxidation state of bromine is +5 while that of fluorine is -1.
The Br-F bonds are polar. The overall molecule is polar due to asymmetric charge distribution concentrating on the central atom since the molecule is square pyramidal.