Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
Answer:
Resistance
Explanation:
Resistance is the measure of the opposition of current in a circuit.
Answer:
The primary producer would be at the bottom of the food chain.
Explanation:
Magnesium (Mg)
The reason for this is the reactivity of the listed metals. Gold and silver are extremely unreactive metals. It is because of this unreactive nature that they remain in good condition for long periods of time, and are preferred in jewelry. Copper, although more reactive than gold and silver, is still not reactive enough to react with HCl.
The only metal that will react is magnesium.
It is a. oxidation-reduction