According to the research, mentally challenging reduces the risk of loss of brain function, otherwise physically challenging sports involve exercise/physical training.
<h3>What is the difference between mentally challenging and physically challenging sports?</h3>
Mentally challenging sports require a mental effort to do it and cognitive skills.
On the other hand, physically challenging sport is that physical activity that involves endurance, strength, speed and agility.
Therefore, we can conclude that according to the research, mentally challenging reduces the risk of loss of brain function, otherwise physically challenging sports involve exercise/physical training.
Learn more about mentally and physically challenging here: brainly.com/question/7158760
#SPJ1
Answer:
Yes, but there are other races that get treated badly, so I say all lives matter.
Answer:

General Formulas and Concepts:
<u>Algebra I</u>
- Terms/Coefficients
- Functions
- Function Notation
- Factoring
<u>Calculus</u>
Derivatives
Derivative Notation
Derivative Property [Addition/Subtraction]: ![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Explanation:
<u>Step 1: Define</u>
<em>Identify</em>
y = x(1 + x)³
<u>Step 2: Differentiate</u>
- Product Rule [Derivative Rule - Chain Rule]:
![\displaystyle y' = \frac{d}{dx}[x] \cdot (1 + x)^3 + x \cdot \frac{d}{dx}[(1 + x)^3] \cdot \frac{d}{dx}[1 + x]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5D%20%5Ccdot%20%281%20%2B%20x%29%5E3%20%2B%20x%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%281%20%2B%20x%29%5E3%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B1%20%2B%20x%5D)
- Derivative Property [Addition/Subtraction]:
![\displaystyle y' = \frac{d}{dx}[x] \cdot (1 + x)^3 + x \cdot \frac{d}{dx}[(1 + x)^3] \cdot (\frac{d}{dx}[1] + \frac{d}{dx}[x])](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5D%20%5Ccdot%20%281%20%2B%20x%29%5E3%20%2B%20x%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%281%20%2B%20x%29%5E3%5D%20%5Ccdot%20%28%5Cfrac%7Bd%7D%7Bdx%7D%5B1%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5D%29)
- Basic Power Rule:

- Simplify:

- Factor:
![\displaystyle y' = (1 + x)^2 \bigg[ (1 + x) + 3x \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%281%20%2B%20x%29%5E2%20%5Cbigg%5B%20%281%20%2B%20x%29%20%2B%203x%20%5Cbigg%5D)
- Combine like terms:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
It's B. primary care provider