Answer:
accepts an H⁺
Explanation:
The following balanced ionic equation is given in this question;
HCl + H₂O → H₃O⁺ + Cl⁻
According to Brønsted–Lowry acid–base theory, a base is any substance that can accept hydrogen ions or protons (H+). Using this definition for the above equation, water (H2O) accepts a proton or H+ that was donated by HCl to form H30+ (hydronium ion), hence, water is acting as a BASE in this reaction because it accepts an H+.
Explanation:
non zeores digits always significant any zero between two significant digits are significant a final zeros in the decimal portion only are significant
1 answer · Chemistry
Best Answer
Water steam condenses if its pressure is equal to vapor saturation vapor pressure.
Use the Clausius-Clapeyron relation.
I states the temperature gradient of the saturation pressure is equal to the quotient of molar enthalpy of phase change divided by molar volume change due to phase transition time temperature:
dp/dT = ΔH / (T·ΔV)
Because liquid volume is small compared to vapor volume
ΔV in vaporization is approximately equal to to the vapor volume. Further assume ideal gas phase:
ΔV ≈ V_v = R·T/p
Hence
dp/dT = ΔHv / (R·T²/p)
<=>
dlnp/dT = ΔHv / (R·T²)
If you solve this DE an apply boundary condition p(T₀)= p₀.
you get the common form:
ln(p/p₀) = (ΔHv/R)·(1/T₀ - 1/T)
<=>
p = p₀·exp{(ΔHv/R)·(1/T₀ - 1/T)}
For this problem use normal boiling point of water as reference point:
T₀ =100°C = 373.15K and p₀ = 1atm
Therefore the saturation vapor pressure at
T = 350°C = 623.15K
is
p = 1atm ·exp{(40700J / 8.314472kJ/mol)·(1/373.15K - 1/623.15K)} = 193 atm
hope this helps
Answer:
ΔT = 20.06 °C
Explanation:
The equation used for this problem is as follow,
Q = m Cp ΔT ----- (1)
Where;
Q = Heat = 1.17 kJ = 1170 J
m = mass = 24.1 g
Cp = Specific Heat Capacity = 2.42 J.g⁻¹.°C⁻¹
ΔT = Change in Temperature = <u>??</u>
Solving eq. 1 for ΔT,
ΔT = Q / m Cp
Putting values,
ΔT = 1170 J / 24.1 g × 2.42 J.g⁻¹.°C⁻¹
ΔT = 20.06 °C