Answer:
0.846 moles.
Explanation:
- This is a stichiometric problem.
- The balanced equation of complete combustion of butane is:
C₄H₁₀ + 6.5 O₂ → 4 CO₂ + 5 H₂O
- It is clear from the stichiometry of the balanced equation that complete combustion of 1.0 mole of butane needs 6.5 moles of O₂ to produce 4 moles of CO₂ and 5 moles of H₂O.
<u><em>Using cross multiplication:</em></u>
- 1.0 mole of C₄H₁₀ reacts with → 6.5 moles of O₂
- ??? moles of C₄H₁₀ are needed to react with → 5.5 moles of O₂
- The number of moles of C₄H₁₀ that are needed to react with 5.5 moles of O₂ = (1.0 x 5.5 moles of O₂) / (6.5 moles of O₂) = 0.846 moles.
Answer:
The best practices officers should use when securing a crime scene is option D
D. They should secure a larger area than the actual crime scene
Explanation:
Officers should secure the scene by limiting access to the scene and movement within the scene
Three layers of secure perimeter should be used by officers to secure a crime scene, with the smallest inside perimeter being the actual crime scene
Next to the crime scene, is an inner perimeter which is the designated meeting point/command post
The outer perimeter, which is the third outer layer is to keep onlookers, passerby, and nonessential personnel at safety and out of the actual crime scene.
1 mole C3H8 produces 4 moles H2O. So, first we convert 32 grams of propane to moles and then find moles of H2O. Then convert moles of H2O to grams of H2O
Moles of H2O produced = 32 g C3H8 x 1 mole/44 g x 4 moles H2O/mole C3H8 = 2.909 moles H2O
Grams H2O produced = 2.909 moles H2O x 18 g/mole = 52.36 g = 52 g H2O
Answer:
The answer to your question is below
Explanation:
5) Fe₂O₃(s) + 3H₂O ⇒ 2Fe(OH)₃ (ac) Synthesis reaction
6) 2C₄H₁₀(g) + 13O₂(g) ⇒ 8CO₂ (g) + 10H₂O Combustion reaction
7) 2NO₂ (g) ⇒ 2O₂ (g) + N₂ (g) Decomposition reaction
8) H₃P (g) + 2O₂ (g) ⇒ PO (g) + 3H₂O Single replacement reaction
False it can only be one to take place