Wavelength of the light is 2.9 × 10⁻⁷ m.
<u>Explanation:</u>
Planck - Einstein equation shows the relationship between the energy of a photon and its frequency, and they are directly proportional to each other and it is given by the equation as E = hν,
where E is the energy of the photon
h is the Planck's constant = 6.626 × 10⁻³⁴ J s
ν is the frequency
From the above equation, we can find the frequency by rearranging the equation as,
ν = =
Now the frequency and the wavelength are in inverse relationship with each other.
ν × λ = c
It can be rearranged to get λ as,
λ = c / ν
=
So wavelength is 2.9 × 10⁻⁷ m.
Answer:
Explanation:40 mph = 64.3738 kph
kph/3.6 = m/s
64.3738/3.6 = 17.8816 m/s
30 mins in seconds = 30 x 60 = 1800 s
1800 s x 17.8816 m/s = 32186.88 m or 32.18688 km or 20 miles
As the gas cools it condenses and becomes a liquid its atoms also become smaller
Order.
Hope this helps! :)
Answer:
the molarity is 3.68 moles/L
Explanation:
the molality of the solution of sucrose is
m= moles of glucose / Kg of solvent (water)= 6.81 ,
since the molecular weight of glucose is 180.156 gr/mole , then per each kilogram of solvent there is
6.81 moles*180.156 gr/mole + 1000 gr of water = 2226.86 gr of solution
from the density
volume of solution = mass of solution/density = 2286.86 gr / 1.2 gr/ml = 1855.71 ml
therefore there is 1000 gr of water in 1855.71 ml
then the molarity M is
M= moles of glucose / L of solution = (moles of glucose / Kg of solvent) * (Kg of solvent/L of solution) = 6.81 moles/Kg * 1Kg/1.85 L = 3.68 moles/L
M= 3.68 moles/L
Note:
- Would be wrong in this case to assume density of water = 1 Kg/L since the solution is heavily concentrated in glucose and therefore the density of water deviates from its pure value.