No, because there’s 6 Oxygens going in and only 3 going out. To balance:
2S+3O2 -> 2SO3
It all depends what theory it is most are supported by really good evidence but they just don't have all the evidence so it can't be proven a fact at that time
Answer:
1.089%
Explanation:
From;
ν =1/2πc(k/meff)^1/2
Where;
ν = wave number
meff = reduced mass or effective mass
k = force constant
c= speed of light
Let
ν =1/2πc (k/meff)^1/2 vibrational wave number for 23Na35 Cl
ν' =1/2πc(k'/m'eff)^1/2 vibrational wave number for 23Na37 Cl
The between the two is obtained from;
ν' - ν /ν = (k'/m'eff)^1/2 - (k/meff)^1/2 / (k/meff)^1/2
Therefore;
ν' - ν /ν = [meff/m'eff]^1/2 - 1
Substituting values, we have;
ν' - ν /ν = [(22.9898 * 34.9688/22.9898 + 34.9688) * (22.9898 + 36.9651/22.9898 * 36.9651)]^1/2 -1
ν' - ν /ν = -0.01089
percentage difference in the fundamental vibrational wavenumbers of 23Na35Cl and 23Na37Cl;
ν' - ν /ν * 100
|(-0.01089)| × 100 = 1.089%
Answer:
1.332 g.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- At the same T and P and constant V (1.0 L), different gases have the same no. of moles (n):
<em>∴ (n) of CO₂ = (n) of C₂H₆</em>
<em></em>
∵ n = mass/molar mass
<em>∴ (mass/molar mass) of CO₂ = (mass/molar mass) of C₂H₆</em>
mass of CO₂ = 1.95 g, molar mass of CO₂ = 44.01 g/mol.
mass of C₂H₆ = ??? g, molar mass of C₂H₆ = 30.07 g/mol.
<em>∴ mass of C₂H₆ = [(mass/molar mass) of CO₂]*(molar mass) of C₂H₆</em> = [(1.95 g / 44.01 g/mol)] * (30.07 g/mol) =<em> 1.332 g.</em>
<em></em>
Evaporation,condensation,precipitation,sublimation,transpirtation,runoff and infiltration