Answer:
The Current Iₜ = I₁ + I₂ + I₃
Charge Qₜ = Q₁ + Q₂ + Q₃
Potential difference Vₜ = V₁ = V₂ = V₃
The total capacitance Cₜ = C₁ + C₂ + C₃
Explanation:
According to the attached image;
For parallel arrangements of capacitors, the current flowing through each of the capacitors sums up to the total current flowing through the circuit;
Iₜ = I₁ + I₂ + I₃
Also the charge storage by each capacitor sums up to give the total charge stored;
Qₜ = Q₁ + Q₂ + Q₃
The potential difference across each of the capacitors are the same and equal to the total voltage across the circuit;
Vₜ = V₁ = V₂ = V₃
The total capacitance equals the sum of the capacitances of each of the capacitors;
Cₜ = C₁ + C₂ + C₃
A line that joins dots plotted on a graph paper is called a line graph. It is used to show the variation of a quantity with respect to another. A line graph represents two pieces of information that are usually related.
Taking the perspective of a student learning astronomy or physics, graphs are useful because they can summarize a LOT of information into one picture. When scientists do research graphs are often the only way to represent data that has been collected.
plz mark me as brainliest if this helped :)
The solution would be like this for this specific problem:
Given:
diffraction grating
slits = 900 slits per centimeter
interference pattern that
is observed on a screen from the grating = 2.38m
maxima for two different
wavelengths = 3.40mm
slit separation .. d =
1/900cm = 1.11^-3cm = 1.111^-5 m <span>
Whenas n = 1, maxima (grating equation) sinθ = λ/d
Grant distance of each maxima from centre = y ..
<span>As sinθ ≈ y/D y/D =
λ/d λ = yd / D </span>
∆λ = (λ2 - λ1) = y2.d/D - y1.d/D
∆λ = (d/D) [y2 -y1]
<span>∆λ = 1.111^-5m x [3.40^-3m] / 2.38m .. .. ►∆λ = 1.587^-8 m</span></span>
Answer:
Making a quick cut left to intercept a pass
Explanation:
It takes more energe to do than running