Answer:
Explanation:
Both these questions are based on the Universal Law of Gravitation, which is given by :
F = Gm1m2 / r²
2) F = 6.67 x 10⁻¹¹ x 8 x 10³ x 1.5 x 10³ / 1.5 x 1.5
F = 6.67 x 10⁻⁵ x 8 / 1.5
F = 35.57 x 10⁻⁵ N
3) F = 6.67 x 10⁻¹¹ x 7.5 x 10⁵ x 9.2 x 10⁷ / 7.29 x 10⁴
F = 6.67 x 10⁻³ x 7.5 x 9.2 / 7.29
F = 63.13 x 10⁻³ N
Answer:
Explanation:
Givens
vi = 10 m/s
a = 1.5 m/s^2
d = 600 m
vf = ?
Formula
vf^2 = vi^2 + 2*a*d
Solution
vf^2 = 10^2 + 2*1.5 * 600
vf^2 = 100 + 1800
vf^2 = 1900
sqrt(vf^2) = sqrt(1900)
vf = 43.59 m/s
Answer:
T = 6.0 N
Explanation:
given,
mass of the cord = 0.46 Kg
length of the supports = 7.2 m
time taken to travel = 0.74 s
tension in the chord = ?
using formula for tension calculation



v = 9.73 m/s
now, calculation of tension

T = 6.0 N
The tension in the cord is equal to 6.0 N.
Refer to the diagram shown below.
Assume that
(a) The piano rolls down on frictionless wheels,
(b) Wind resistance is negligible.
The distance along the ramp is
d = (1.3 m)/sin(22°) = 3.4703 m
The component of the piano's weight along the ramp is
mg sin(22°)
If the acceleration down the ramp is a, then
ma = mg sin(22°)
a = g sin(22°) = (9.8 m/s²) sin(22°) = 3.671 m/s²
The time, t, to travel down the ramp from rest is given by
(3.4703 m) = 0.5*(3.671 m/s²)*(t s)²
t² = 3.4703/1.8355 = 1.8907
t = 1.375 s
Answer: 1.375 s