To solve this problem it is necessary to apply the kinematic equations of motion.
By definition we know that the position of a body is given by

Where
Initial position
Initial velocity
a = Acceleration
t= time
And the velocity can be expressed as,

Where,

For our case we have that there is neither initial position nor initial velocity, then

With our values we have
, rearranging to find a,



Therefore the final velocity would be



Therefore the final velocity is 81.14m/s
Answer:
Explanation:
Energy of an inductor = 1/2 L i²
L is inductance , i is current .
= 1/2 x 12 x .3²
= .54 J
Explanation:
It is given that,
Frequency of monochromatic light, 
Separation between slits, 
(a) The condition for maxima is given by :

For third maxima,



(b) For second dark fringe, n = 2





Hence, this is the required solution.
Answer: 0.25 m/s
Explanation: Speed = wavelengt · frequency
v = λf and frequency is 1/period f = 1/T
Then v = λ/T = 5 m / 20 s = 0.25 m/s