This problem is providing us with the mass (70 g), absorbed heat (96 J) and initial and final temperatures (293 K and 313 K, respectively) so the specific heat of the material is required and found to be 0.0686 J/(g*K) as shown below:
<h3>
Calorimetry:</h3>
In chemistry, we can go over calorimetry by writing the following relationship among heat, mass, specific heat and temperature change:

Thus, one can get the specific heat by solving for C in the previous equation:

Hence, we can plug in the given data to obtain:

Learn more about calorimetry: brainly.com/question/1407669
Answer:
There is None
Explanation:
This is because it is a derived function dependent on other factors.
Answer:
There are many reasons to examine human cells and tissues under the microscope. Medical and biological research is underpinned by knowledge of the normal structure and function of cells and tissues and the organs and structures that they make up. In the normal healthy state, the cells and other tissue elements are arranged in regular, recognizable patterns. Changes induced by a wide range of chemical and physical influences are reflected by alterations in the structure at a microscopic level, and many diseases are characterized by typical structural and chemical abnormalities that differ from the normal state. Identifying these changes and linking them to particular diseases is the basis of histopathology and cytopathology, important specializations of modern medicine. Microscopy plays an important part in haematology (the study of blood), microbiology (the study of microorganisms including parasites and viruses), and more broadly in the areas of biology, zoology, and botany. In all these disciplines, specimens are examined under a microscope.
<em><u>hope</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>helps</u></em><em><u> </u></em>