Centripetal force is equal to (mv^2)/r
The way I use to answer these question is to set every variable to 1
m=1
v=1
r=1
so centripetal force =1
then change the variable we're looking at
and since we're find when it's half we could either change it to 1/2 or 2, but 2 is easier to use
m=1
v=2
r=1
((1)×(2)^2)/1=4
So the velocity in the 1st part is half the velocity in the 2nd part and the centripetal force is 4× less
The answer is the centripetal force is 1/4 as big the second time around
Answer:
m = 0.4 [kg]
Explanation:
Weight is considered as a force and this is equal to the product of mass by gravitational acceleration.

where:
W = weight = 0.8 [N]
m = mass [kg]
g = gravity acceleration 2[N/kg]
Therefore:
![m=W/g\\m = .8/2\\m = 0.4 [kg]](https://tex.z-dn.net/?f=m%3DW%2Fg%5C%5Cm%20%3D%20.8%2F2%5C%5Cm%20%3D%200.4%20%5Bkg%5D)
Answer:
Magnets are employed to generate electricity.
Explanation:
Magnets' characteristics are employed to generate electricity. Electrons are pulled and pushed by moving magnetic fields. When you move a magnet around a coil of wire, or a coil of wire around a magnet, the electrons in the wire are pushed out and an electrical current is created.
Technically you can go forever on and on, but maybe your question was like how many rotations in a certain distance?