Answer:
(a) 
(b) 
Explanation:
<u>Electric Circuits</u>
Suppose we have a resistive-only electric circuit. The relation between the current I and the voltage V in a resistance R is given by the Ohm's law:

(a) The electromagnetic force of the battery is
and its internal resistance is
. Knowing the equivalent resistance of the headlights is
, we can compute the current of the circuit by using the Kirchhoffs Voltage Law or KVL:

Solving for i

i=2.28\ A
The potential difference across the headlight bulbs is


(b) If the starter motor is operated, taking an additional 35 Amp from the battery, then the total load current is 2.28 A + 35 A = 37.28 A. Thus the output voltage of the battery, that is the voltage that the bulbs have is

Answer:
Explanation:
We shall apply conservation of momentum law in vector form to solve the problem .
Initial momentum = 0
momentum of 12 g piece
= .012 x 37 i since it moves along x axis .
= .444 i
momentum of 22 g
= .022 x 34 j
= .748 j
Let momentum of third piece = p
total momentum
= p + .444 i + .748 j
so
applying conservation law of momentum
p + .444 i + .748 j = 0
p = - .444 i - .748 j
magnitude of p
= √ ( .444² + .748² )
= .87 kg m /s
mass of third piece = 58 - ( 12 + 22 )
= 24 g = .024 kg
if v be its velocity
.024 v = .87
v = 36.25 m / s .
<span>Actually the second law of thermodynamics would truly gets violated ie, which means that the entrophy changes of the isolated system can never be negative, which covers the above that if heat were to spontaneously flow between any two objects of equal temperature would be fully violated.</span>
Answer:
Torque Of a Force: If The Force has tendency or Bends The Body about Longitudinal axis of the Body it is Torque. Moment Of a Force :If Force has Tendency to or Rotates the Body about Transverse asis the Body It is Moment .
Explanation: