Answer:
The polar coordinate of
is
.
Explanation:
Given a point in rectangular form, that is
, its polar form is defined by:
(1)
Where:
- Norm, measured in meters.
- Direction, measured in sexagesimal degrees.
The norm of the point is determined by Pythagorean Theorem:
(2)
And direction is calculated by following trigonometric relation:
(3)
If we know that
and
, then the components of coordinates in polar form is:


Since
and
, direction is located at 3rd Quadrant. Given that tangent function has a period of 180º, we find direction by using this formula:


The polar coordinate of
is
.
Answer:
The impulse exerted by one cart on the other has a magnitude of 4 N.s.
Explanation:
Given;
mass of the first cart, m₁ = 2 kg
initial speed of the first car, u₁ = 3 m/s
mass of the second cart, m₂ = 4 kg
initial speed of the second cart, u₂ = 0
Let the final speed of both carts = v, since they stick together after collision.
Apply the principle of conservation of momentum to determine v
m₁u₁ + m₂u₂ = v(m₁ + m₂)
2 x 3 + 0 = v(2 + 4)
6 = 6v
v = 1 m/s
Impulse is given by;
I = ft = mΔv = m(
The impulse exerted by the first cart on the second cart is given;
I = 2 (3 -1 )
I = 4 N.s
The impulse exerted by the second cart on the first cart is given;
I = 4(0-1)
I = - 4 N.s (equal in magnitude but opposite in direction to the impulse exerted by the first).
Therefore, the impulse exerted by one cart on the other has a magnitude of 4 N.s.
Answer:
I HOPE THIS IS CORRECT
Explanation:
Power of water =2 kw=2000w
Mass of water =200kg
difference in temperature ΔT=70−10=60oC
Concept
energy required to heat the water = energy given by water in time t=pt
energy required to increase tempeature of water by 60oC,Q=msΔT
S= specific heat =4200J/kgoC
pt=msΔT
2000×t=200×4200×60
t=25200
or t=25.2×103sec.
Answer:
the average drift speed of the mobile electrons in the metal is 1.089 x 10⁻⁴ m/s.
Explanation:
Given;
mobility of the mobile electrons in the metal, μ = 0.0033 (m/s)/(N/C)
the electric field strength inside the cube of the metal, E = 0.033 N/C
The average drift speed of the mobile electrons in the metal is calculated as;
v = μE
v = 0.0033 (m/s)/(N/C) x 0.033 N/C
v = 1.089 x 10⁻⁴ m/s.
Therefore, the average drift speed of the mobile electrons in the metal is 1.089 x 10⁻⁴ m/s.
Yes, <span> the moon fall partly into earth's shadow when it is in its full size</span>