Answer:
Calculate the wavelength associated with an electron with energy 2000 eV.
Sol: E = 2000 eV = 2000 × 1.6 × 10–19 J
Answer:
15.4 kg.
Explanation:
From the law of conservation of momentum,
Total momentum before collision = Total momentum after collision
mu+m'u' = V(m+m').................... Equation 1
Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.
Given: m = 7.7 kg, u' = 0 m/s (at rest)
Let: u = x m/s, and V = 1/3x m/s
Substitute into equation 1
7.7(x)+m'(0) = 1/3x(7.7+m')
7.7x = 1/3x(7.7+m')
7.7 = 1/3(7.7+m')
23.1 = 7.7+m'
m' = 23.1-7.7
m' = 15.4 kg.
Hence the mass of the second sphere = 15.4 kg
The best and most correct answer among the choices provided by your question is the third choice or letter C.
<span>The statement "Your hypothesis must be testable." is true about the scientific process.
</span>I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
68.6m/s is the answer <span />
The period of the sound wave at the given frequency is determined as 0.00235 second.
<h3>
Period of the sound wave</h3>
The period of the sound wave at the given frequency is calculated as follows;
Period is reciprocal of frequency.
T = 1/f
T = 1/425
T = 0.00235 second
Thus, the period of the sound wave at the given frequency is determined as 0.00235 second.
Learn more about period here: brainly.com/question/10428039
#SPJ1