1. The problem statement, all variables and given/known data Knowing that snow is discharged at an angle of 40 degrees, determine the initial speed, v0 of the snow at A. Answer: 6.98 m/s 2. Relevant equations 3. The attempt at a solution I have found the x and y velocity and position formulas. Now since I don't know time, should I solve both position equations for time (t) and set them equal to each other to get my only unknown, vi? The quadratic equation for time in the y-dir seems a bit hectic. Is there an easier way to go about trying to find vi?
Answer:
No. Touching a live electric current is never a good idea.
Explanation:
You just pointed out that the gravitational force also depends
on the distance from the planet's center. The radius of Uranus
is about 4 times the Earth's radius. That fact alone means that
the gravitational force on the surface is 1/4² = 1/16 its value on
Earth's surface. So increasing the planet's mass by a factor of
14 doesn't compensate for the 1/16 reduction, and the gravitational
force on Uranus is less than on Earth.
Since the two trains are passing in opposite
directions, so this means that their relative velocities will be the sum of the
two trains that is:
<span>
relative velocity = (13 + 28) = 41m/s</span>
<span>
a. The passengers aboard on train B will see that train A is
moving at 41m/sec due east</span>
<span>b. The passengers aboard on train A will see that
train B is moving at 41m/sec due west</span>