Answer: D
Explanation:
Let us examine the given actions to see which ones generate heat and sound energy from mechanical energy.
A) Stretching a string.
The mechanical stretching creates tension in the string, which is released when the tension is removed. The generation of thermal or sound energy is minimal or negligible.
B) Squeezing a sponge ball
The sponge ball experiences compressive loading. This generates minimal or no heat and sound energy.
C) Throwing a ball upwards in the air
Air friction generates minimal or no heat at low velocities. At low velocities the pressure waves are too small to generate sound.
D) Striking a hammer on a nail.
A tremendous amount of force is applied over a small area to generate very high stresses that are in the plastic zone. A high amount of thermal energy is generated and the localized disturbance of the air generates audible sound.
This is the correct situation.
Explanation:
It is given that, the metal with the highest melting temperature is tungsten which melts at around 3400 K, T = 3400 K
We need to find the wavelength of the peak of the black body distribution for this temperature. It can be calculated using Wein's displacement law as :

k is the constant,



or

The wavelength of infrared is from 700 nm to 1 mm. So, the lies in infrared region of the spectrum. Hence, this is the required solution.
Any large factory that takes multiple machines to manufacture a singular product.
Answer:
https://www.gstatic.com/education/formulas2/355397047/en/elastic_collisions.svg
Explanation:
Answer:
a.
Explanation:
cuz whenever the ball was traveling up the staircase it was building up energy to use (potential energy) unlike b.