1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
schepotkina [342]
3 years ago
13

The diameter of a beach ball is 10 inches. How many cubic inches of air can the beach ball hold? Use 3.14 for pie . Round to the

nearest tenth of a cubic inch
Mathematics
1 answer:
Morgarella [4.7K]3 years ago
7 0

volume = 4/3 x PI x r^3

r = 10/2 =5

V = 4/3 x 3.14 x 5^3 = 523.333

523.3 cubic inches

You might be interested in
Natalia goes to the bookstore with $25.00. She buys 4 magazines for $3.25 each and a comic book for $5.75. How much money does s
Andrew [12]

Answer:

a

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
What formula should be entered in A3 to compute A1 times B1?
oksano4ka [1.4K]

The formula that should be entered in A3 is = A1 * B1

<h3>How to determine the formula?</h3>

The question implies that:

A3 = A1 times B1

In mathematics, the term "times" means *

So, we have:

A3 = A1 * B1

Remove the variable A3

= A1 * B1

Hence, the formula that should be entered in A3 is = A1 * B1

Read more about excel formulas at:

brainly.com/question/1285762

#SPJ1

8 0
1 year ago
What is the least common<br> denominator of 9/15 and 2/3
eduard

Answer:5

Step-by-step explanation:

3 0
2 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
Solve eqaution 15m+22=-7m+18
lilavasa [31]
It will beee 22/4 :)....

7 0
3 years ago
Read 2 more answers
Other questions:
  • Jim has calculated the area of a rectangle to be x^3+x^2+x+1. If the width of the rectangle is x+1, then it's length is
    15·2 answers
  • 20 points!!!
    9·2 answers
  • If I go into a pizza house, and I have the choice of having one of 3 different types of dough, with one of 7 different toppings,
    12·1 answer
  • Sergio is s years old. which expression shows how old he will be 7 years from now? question 5 options: 7s 7 – s s 7 7s 7
    15·1 answer
  • What is:<br> (s+12)+(3s-8)<br> simplified?
    11·1 answer
  • The Brown’s used 50 feet of rope to surround their rectangular garden. The length of the garden is 4 times as much as its width.
    8·2 answers
  • Please help I will brainliest!! Really urgent!!
    13·2 answers
  • In the late 2000's sales of SUVs decreased due to higher gas prices and improved alternative vehicles. A car dealer is intereste
    13·1 answer
  • 40. A pet store sells digestible mouthwash for cats. To promote the new
    15·1 answer
  • How to do this friends ???
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!