Answer:
The gravitational potential energy between two particles, if the distance between them is halved, is multiplied by 4 (option c).
Explanation:
The gravitational force is the force of mutual attraction that two objects with mass experience.
The Law of Universal Gravitation enunciated by Newton says that every material particle attracts any other material particle with a force directly proportional to the product of their masses and inversely proportional to the square of the distance that separates them. Mathematically this is expressed as:

where m1 and m2 are the masses of the objects, r the distance between them and G a universal constant that receives the name of constant of gravitation.
If the distance between two particles is reduced by half, then, where F' is the new value of the gravitational force:




F'=4*F
<u><em>
The gravitational potential energy between two particles, if the distance between them is halved, is multiplied by 4 (option c).</em></u>
550! OBVY! lol! ope this helps1
Given Information:
Number of turns = N = 1130 turns
Length of solenoid = L = 0.430 m
Magnetic field = B = 1.0x10⁻⁴ T
Required Information:
Current = I = ?
Answer:
I = 0.0302 A
Explanation:
The current flowing in the solenoid winding can be found using
I = BL/μ₀N
Where μ₀ is the permeability of free space, N is the number of turns, B is the magnetic field and L is the length of solenoid
I = 1.0x10⁻⁴*0.430/4πx10⁻⁷
*1130
I = 0.0302 A
or
I = 30.28 mA
Answer:
Newton's first law states that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
Newton's second law states that the acceleration of an object is directly related to the net force and inversely related to its mass. Acceleration of an object depends on two things, force and mass.
Newton's third law states that if an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A. This law represents a certain symmetry in nature: forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself.
Explanation:
A water wave is an example of a mechanical wave. A wave that can travel only through matter is called a mechanical wave.