The latent heat of fusion refers to the solid to liquid or liquid to solid states.
Answer: Option C
<u>Explanation:
</u>
It is known that the inter conversion process from the states of solid to liquid is referred as fusion. So, for these conversions, the external energy in the heat form should be supplied to solid.
This external energy should be greater than the latent heat of solid in order to successfully break the bonds to form liquid. So the change in the enthalpy of the reaction while conversion from solids to liquids are termed as latent heats of fusion.
Even the inter-conversion from liquid to solid state will undergo change in enthalpy where the heat will be released and that is termed as latent heats of solidification. It is found that latent heat of solidification is equal in magnitude but opposite in direction with the latent heats of fusion.
Answer:
s = 1.7 m
Explanation:
from the question we are given the following:
Mass of package (m) = 5 kg
mass of the asteriod (M) = 7.6 x 10^{20} kg
radius = 8 x 10^5 m
velocity of package (v) = 170 m/s
spring constant (k) = 2.8 N/m
compression (s) = ?
Assuming that no non conservative force is acting on the system here, the initial and final energies of the system will be the same. Therefore
• Ei = Ef
• Ei = energy in the spring + gravitational potential energy of the system
• Ei = \frac{1}{2}ks^{2} + \frac{GMm}{r}
• Ef = kinetic energy of the object
• Ef = \frac{1}{2}mv^{2}
• \frac{1}{2}ks^{2} + (-\frac{GMm}{r}) = \frac{1}{2}mv^{2}
• s =
s =
s = 1.7 m
Explanation:
hope this helps you dear friend.
Answer:
<em>The period of the motion will still be equal to T.</em>
<em></em>
Explanation:
for a system with mass = M
attached to a massless spring.
If the system is set in motion with an amplitude (distance from equilibrium position) A
and has period T
The equation for the period T is given as

where k is the spring constant
If the amplitude is doubled, the distance from equilibrium position to the displacement is doubled.
Increasing the amplitude also increases the restoring force. An increase in the restoring force means the mass is now accelerated to cover more distance in the same period, so the restoring force cancels the effect of the increase in amplitude. Hence, <em>increasing the amplitude has no effect on the period of the mass and spring system.</em>
Longitude- Horizontal (East West)
Latitude- Vertical (North South)