Given:
density of air at inlet, 
density of air at inlet, 
Solution:
Now,

(1)
where
A = Area of cross section
= velocity of air at inlet
= velocity of air at outlet
Now, using eqn (1), we get:

= 1.14
% increase in velocity =
=114%
which is 14% more
Therefore % increase in velocity is 14%
Answer:
counter question if you get out the shower clean then how does your towel get dirty?
Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
If it is a headwind it means it's travelling against the motion of the plane. This means it's velocity is simply v=720-16=704 km/h due east.
Answer:
The SI unit of intensity is the watt per square meter/metre (W/m^2.)
Explanation:
Intensity is equal to the power transferred per unit area. Since power is measured in watts (W) and 1 W = 1 J/s, then intensity can be viewed as how fast energy goes through a certain area.
In physics, intensity is often used when studying light, sound, or other phenomena that involve waves or energy transfer. (With waves, the power value is taken as the average power transfer over the wave's period.)