Really long we’ll not long but far in distance
The magnitude of the magnetic field inside the solenoid is
.
The given parameters;
- <em>length of the solenoid, L = 91 cm = 0.91 m</em>
- <em>radius of the solenoid, r = 1.5 cm = 0.015 m</em>
- <em>number of turns of the solenoid, N = 1300 </em>
- <em>current in the solenoid, I = 3.6 A</em>
The magnitude of the magnetic field inside the solenoid is calculated as;

where;
is the permeability of frees space = 4π x 10⁻⁷ T.m/A

Thus, the magnitude of the magnetic field inside the solenoid is
.
Learn more here:brainly.com/question/17137684
Answer:
In a time-position graph (s-t graph):
slope = velocity
In a time-velocity graph (v-t graph):
slope = acceleration
area under graph = change in displacement (distance travelled)
In a time-acceleration graph (a-t graph):
area under graph = change in velocity
Answer:
Explanation:
1 ) Magnetic field due to a circular coil carrying current
= μ₀I / 2r
I is current , r is radius of the wire , μ₀ = 4π x 10⁻⁷
= 4π x 10⁻⁷ x 15 / (2 x 3.5 x 10⁻²)
= 26.9 x 10⁻⁵ T
2 )
Negative z direction .
The direction of magnetic field due to a circular coil having current is known
with the help of screw rule or right hand thumb rule.
3 )
If we decrease the radius the magnetic field will:__increase _____.
A. Increase.
Magnetic field due to a circular coil carrying current
B = μ₀I / 2 r
Here r is radius of the coil . If radius decreases magnetic field increases.
So magnetic field will increase.