<span>Atoms with greatly different electronegativity values are expected to form </span>ionic bonds
Answer:
a) Limiting: sulfur. Excess: aluminium.
b) 1.56g Al₂S₃.
c) 0.72g Al
Explanation:
Hello,
In this case, the initial mass of both aluminium and sulfur are missing, therefore, one could assume they are 1.00 g for each one. Thus, by considering the undergoing chemical reaction turns out:

a) Thus, considering the assumed mass (which could be changed based on the one you are given), the limiting reagent is identified as shown below:

Thereby, since there 1.00g of aluminium will consume 0.0554 mol of sulfur but there are just 0.0156 mol available, the limiting reagent is sulfur and the excess reagent is aluminium.
b) By stoichiometry, the produced grams of aluminium sulfide are:

c) The leftover is computed as follows:

NOTE: Remember I assumed the quantities, they could change based on those you are given, so the results might be different, but the procedure is quite the same.
Best regards.
i think the answer is B. They have low reactivity.Hope this helped (:
I got 134.91 but if you round it you’ll get 135
Answer:
27%
Explanation:
Hello,
The following information is missing, but I found it: "1.92 g of sodium sulfate is produced from the reaction of 4.9 g of sulfuric acid and 7.8 g of sodium hydroxide" so the undergoing chemical reaction is:

Now, to compute the percent yield, we must first establish the limiting reagent to subsequently determine the theoretical yield of sodium sulfate because the real (1.92g) is already given, thus, we consider the following procedure:

- The moles of sodium hydroxide that completely react with 0.05 moles of sulfuric acid are:

As this number is higher than the previously computed 0.05 moles of available sulfuric acid, one states that the sulfuric acid is the limiting reagent. Now, the theoretical grams of sodium sulfate are found via:

Finally, the percent yield turns out into:

%
Best regards.