The solubility product of a substance us calculated by the product of the concentration of the dissociated ions in the solution raise to the stoichiometric coefficient of the ions. Therefore, we need the dissociation reaction. For this, it will have the reaction:
PbI2 = Pb^2+ + 2I-
We solve as follows:
Ksp = [Pb2+][I-]^2 = <span>1.4 x 10-8
</span><span>1.4 x 10-8 = x(2x)^2
</span><span>1.4 x 10-8 = 4x^3
x = 1.5x10^-3 M
The molar solubility would be </span>1.5x10^-3 M.
Answer:
<h2>13.82 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>13.82 moles</h3>
Hope this helps you
Answer:
25.2°C
Explanation:
Given parameters:
Energy applied to the water = 1000J
Mass of water = 50g
Final temperature = 30°C
Unknown:
Initial temperature = ?
Solution:
To solve this problem, we use the expression below:
H = m c Ф
H is the energy absorbed
m is the mass
c is the specific heat capacity
Ф is the change in temperature
1000 = 50 x 4.184 x (30 - initial temperature )
1000 = 209.2(30 - initial temperature)
4.78 = 30 - initial temperature
4.78 - 30 = - initial temperature
Initial temperature = 25.2°C
Why do molecules combined into chains?
Their boiling points tend to increase with chain length.<span>
</span>