Answer:
a) The mass flow rate through the nozzle is 0.27 kg/s.
b) The exit area of the nozzle is 23.6 cm².
Explanation:
a) The mass flow rate through the nozzle can be calculated with the following equation:

Where:
: is the initial velocity = 20 m/s
: is the inlet area of the nozzle = 60 cm²
: is the density of entrance = 2.21 kg/m³
Hence, the mass flow rate through the nozzle is 0.27 kg/s.
b) The exit area of the nozzle can be found with the Continuity equation:



Therefore, the exit area of the nozzle is 23.6 cm².
I hope it helps you!
round the corners of the magnet that where it is stronger
hope this helps :)
Answer:
B. Cant stop things from going wrong.
Explanation:
To me it's the only reasonable answer...
Answer:
The minimum frequency of the coil is 7.1 Hz
Explanation:
Given;
number of turns, N = 200 turns
cross sectional area, A = 300 cm² = 300 x 10⁻⁴ m²
magnitude of magnetic field strength, B = 30 x 10⁻³ T
maximum value of the induced emf, E = 8 V
Maximum induced emf is given as;
E = NBAω
where
ω is angular velocity (ω = 2πf)
E = NBA2πf
where;
f is the minimum frequency, measured in hertz (Hz)
f = E / (NBA2π)
f = 8 / (200 x 30 x 10⁻³ x 300 x 10⁻⁴ x 2 x 3.142)
f = 7.073 Hz
f = 7.1 Hz
Therefore, the minimum frequency of the coil is 7.1 Hz
Atmospheric electricity and storms, electrostatic control filters, and industrial electrostatic seperation as well as spark discharge. these are just a few. hope it helps.