Answer:
Mass of Ca in sample, Mass of Br in sample, Number of moles of Ca in sample, Number of moles of Br in sample, Mass or moles of element other than Ca or Br in sample
Explanation:
The AP Classroom will not count your answer to this question as correct unless it includes at least one of the answers listed above. If you say that theanswer to this question is density, it will be marked as incorrect, I found that out the hard way when I used the answers that brainly gave me.
Good luck,
I applaud you for using the sources avalible to you, which is /definetly not/ cheeting.
<u>Answer:</u> The volume of stock solution needed is 90 mL
<u>Explanation:</u>
To calculate the molarity of the diluted solution, we use the equation:

where,
are the molarity and volume of the stock sulfuric acid solution
are the molarity and volume of diluted sulfuric acid solution
We are given:

Putting values in above equation, we get:

Hence, the volume of stock solution needed is 90 mL
Answer:
See explaination
Explanation:
1)
we know that
half cell with higher reduction potential is cathode
so
cathode :
N20 + 2H+ + 2e- ---> N2 + H20
anode :
Cr(s) ---> Cr+3 + 3e-
so
overall reaction is
3 N20 + 6H+ + 2 Cr ---> 3N2 + 3H20 + 2Cr+3
now
Eo cell = Eo cathode - Eo anode
so
EO cell = 1.77 + 0.74
Eo cell = 2.51 V
now
in this case
oxidizing agents are N20 and Cr+3
reducing agents are Cr and N2
higher the reduction potential , stronger the oxidizing agent
lower the reduction potential , stronger the reducing agent
so
oxidzing agents
N20 > Cr+3
reducing agents
Cr > N2
2)
cathode :
Au+ + e- --> Au
anode :
Cr ---> Cr+3 + 3e-
overall reaction
3Au+ + Cr ---> 3Au + Cr+3
Eo cell = 1.69 + 0.74
Eo cell = 2.43
now
oxidizing agents :
Au+ > Cr+3
reducing agents :
Cr > Au
3)
cathode :
N20 + 2H+ + 2e- ---> N2 + H20
andoe :
Au ---> Au+ + e-
overall
2 Au + N20 + 2H+ --> 2 Au+ + N2 + H20
Eo cell = 1.77 - 1.69
Eo cell = 0.08
oxidizing agents
N20 > Au+
reducing agents
Au > N2
Answer :
According to the law of conservation of mass, the mass of reactants must be equal to the mass of products.
The balanced chemical reaction is,

As we know that the molar mass of magnesium is 24 g/mole, the molar mass of
is 32 g/mole and the molar mass of magnesium oxide is 40 g/mole.
From the given balanced reaction, we conclude that
As, 1 mole of magnesium react
mole of oxygen to give 1 mole of magnesium oxide.
So, the mass of Mg is 24 g, the mass of
and the mass of MgO is 40 g.
That means 24 g of Mg react with 16 g
to give 40 g of MgO.
Answer:
Pure Chemistry -- is NOT considered a branch of Chemistry.
Explanation:
Second question is number 4.